

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-II Examination, 2020

CHEMISTRY

PAPER: CEMA-IV

CEMAT [24-PA+24-PB] (25 MARKS) + CEMAP [24-PrA+24-PrB] (25 MARKS)

Time Allotted: 1 Hour

Full Marks: 25

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All Symbols are of usual significance.

CEMAT-24-PA

Answer any one question from the following

1.	(a)	Stopping potential for photo electrons emitted from metal surface irradiated by light of $\lambda = 3000$ Å is 1.91V. Find the work function of the metal. What is the new λ for which potential is 0.9V.	3
	(b)	Determine whether the following functions are acceptable or not as state functions	2
		(i) $\sin x (0, \infty)$ (ii) $\tan^{-1} x (0 \le x \le \infty)$	
	(c)	Show that the eigen function of a free particle of mass ' m ' confined in a one- dimensional box of length ' L ' are orthogonal.	2
	(d)	Depict ψ^2 vs r and RDF vs r plot for 1s orbital.	3
	(e)	With the help of a Jablonski diagram depict the various photo physical processes by which a molecule in excited singlet state (S_2^{ν}) can return to the ground singlet state (S_0) . [ν indicates the vibrational level, other terms have their usual significance].	3
2.	(a)	Show that eigen values of a Hermitian operator are real.	2
	(b)	At what wave length does the maximum in the radiant energy density distribution function for a black body occur if (i) $T = 300$ K and (ii) $T = 3300$ K.	3
	(c)	Calculate the zero point energy of a linear simple harmonic oscillator consisting of a particle of mass 2.33×10^{-26} kg and force constant 155 N m ⁻¹ .	2
	(d)	Hydrogen like wave function for 1s orbital is given by $\psi = b_0 e^{-r/a_0}$ (where a_0 is the Bohr radius).	4

- (i) Find out the normalization constant $b_{0.}$
- (ii) Specify the values of n, l and m for 1_{s} electron.
- (iii) Determine the most probable value of r in this state and comment on the result.

(e) State Lambert Beers law. What is the unit of molar extinction coefficient?

CEMAT-24-PB

Answer any one question form the following

3. (a)	Define chemical potential. Is it a state function? Is it extensive or intensive?	4
	Show that $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, x_j \neq i}$ can be written in terms of enthalpy.	
(b)	For a reaction represented by $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$, $K_P = 1.7 \times 10^{12}$ at 300 K. Calculate K_P for $2SO_3(g)) \rightleftharpoons 2SO_2(g) + O_2(g)$.	2
(c)	At 25°C for a cell, having the cell reaction $\text{Sn} + \text{Sn}^{4+} = 2 \text{ Sn}^{2+}$, the equilibrium activity of Sn^{2+} is 0.1. What is that of Sn^{4+} ion ? [Given at 25°C the standard reduction potential for the system $\text{Sn}^{4+}/\text{Sn}^{2+}$ is 0.15 V and that for Sn^{2+}/Sn is -0.136 V].	3
(d)	Draw the equivalent conductance vs. \sqrt{c} plot of HCl and Acetic acid. Explain.	3
4. (a)	Derive Clausius-Clapeyron equation thermodynamically for liquid \rightleftharpoons vapour equilibrium.	3
		3 1
(b)	equilibrium.	
(b) (c)	equilibrium. Plot K_p vs. 1/ <i>T</i> for an exothermic reaction. In a study of the water - gas shift reaction, CO ₂ (g) + H ₂ (g) \rightleftharpoons CO(g) + H ₂ O(g); a mixture of CO ₂ and H ₂ initially containing 42.4 mol% H ₂ was brought to equilibrium in a closed vessel at 1259 K. The system was then found to contain	1
(b) (c) (d)	equilibrium. Plot K_p vs. 1/ <i>T</i> for an exothermic reaction. In a study of the water - gas shift reaction, CO ₂ (g) + H ₂ (g) \rightleftharpoons CO(g) + H ₂ O(g); a mixture of CO ₂ and H ₂ initially containing 42.4 mol% H ₂ was brought to equilibrium in a closed vessel at 1259 K. The system was then found to contain 15.2% H ₂ . Calculate K_p at 1259 K.	1 2

- (ii) Write the reactions at the 2 electrodes and the overall cell reaction
- (iii) Find ΔG° and *K* of the cell reaction.

—×—

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.